Skip to content

[mlir][vector] Use vector.broadcast in place of vector.splat #148028

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 14, 2025

Conversation

newling
Copy link
Contributor

@newling newling commented Jul 10, 2025

Part of deprecation of vector.splat

RFC: https://discourse.llvm.org/t/rfc-mlir-vector-deprecate-then-remove-vector-splat/87143/4
More complete deprecation: #147818

@llvmbot
Copy link
Member

llvmbot commented Jul 10, 2025

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-nvgpu

Author: James Newling (newling)

Changes

Part of deprecation of vector.splat

RFC: https://discourse.llvm.org/t/rfc-mlir-vector-deprecate-then-remove-vector-splat/87143/4
More complete deprecation: #147818


Full diff: https://github.com/llvm/llvm-project/pull/148028.diff

4 Files Affected:

  • (modified) mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp (+1-1)
  • (modified) mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp (+1-1)
  • (modified) mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp (+2-1)
  • (modified) mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir (+3-3)
diff --git a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
index 62022bfb7df1e..22dd3bd0ea98f 100644
--- a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
@@ -123,7 +123,7 @@ void mlir::arith::populateEmulateUnsupportedFloatsLegality(
       vector::FMAOp, vector::OuterProductOp, vector::MatmulOp, vector::ScanOp>(
       [&](Operation *op) { return converter.isLegal(op); });
   target.addLegalOp<arith::BitcastOp, arith::ExtFOp, arith::TruncFOp,
-                    arith::ConstantOp, vector::SplatOp>();
+                    arith::ConstantOp, vector::SplatOp, vector::BroadcastOp>();
 }
 
 void EmulateUnsupportedFloatsPass::runOnOperation() {
diff --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index d2c94b124cdfb..bcd62acf6b9ce 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -688,7 +688,7 @@ Value MmaSyncBuilder::buildMmaSyncMemRefLoadOperand(
 
   Type elementType = getElementTypeOrSelf(memref.getType());
   auto vt = VectorType::get(vectorShape, elementType);
-  Value res = b.create<vector::SplatOp>(loc, vt, loads[0]);
+  Value res = b.create<vector::BroadcastOp>(loc, vt, loads[0]);
   foreachIndividualVectorElement(
       res,
       /*applyFn=*/
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
index 2c48a735bf956..9ebac21770136 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
@@ -438,7 +438,8 @@ struct UnrollCreateDescOp : public UnrollPattern<xegpu::CreateDescOp> {
           // Compute the offset
           Value inc = rewriter.create<arith::ConstantIndexOp>(
               loc, i * blockedChunkSize);
-          Value incVec = rewriter.create<vector::SplatOp>(loc, indiceType, inc);
+          Value incVec =
+              rewriter.create<vector::BroadcastOp>(loc, indiceType, inc);
           Value offsetIndice =
               rewriter.create<arith::AddIOp>(loc, indice, incVec);
 
diff --git a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
index 07e03f3b8473d..bbe27fe1b99d9 100644
--- a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
+++ b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
@@ -20,14 +20,14 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_7:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_8:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_0]][%[[VAL_7]], %[[VAL_8]]] : memref<16x4xf32>
-// CHECK:           %[[VAL_10:.*]] = vector.splat %[[VAL_6]] : vector<2x1xf32>
+// CHECK:           %[[VAL_10:.*]] = vector.broadcast %[[VAL_6]] : f32 to vector<2x1xf32>
 // CHECK:           %[[VAL_11:.*]] = vector.insert %[[VAL_6]], %[[VAL_10]] [0, 0] : f32 into vector<2x1xf32>
 // CHECK:           %[[LHS:.*]] = vector.insert %[[VAL_9]], %[[VAL_11]] [1, 0] : f32 into vector<2x1xf32>
 //
 // CHECK:           %[[VAL_13:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_14:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_1]][%[[VAL_13]], %[[VAL_14]]] : memref<4x8xf32>
-// CHECK:           %[[VAL_16:.*]] = vector.splat %[[VAL_15]] : vector<1x1xf32>
+// CHECK:           %[[VAL_16:.*]] = vector.broadcast %[[VAL_15]] : f32 to vector<1x1xf32>
 // CHECK:           %[[RHS:.*]] = vector.insert %[[VAL_15]], %[[VAL_16]] [0, 0] : f32 into vector<1x1xf32>
 //
 // CHECK:           %[[VAL_18:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
@@ -42,7 +42,7 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_27:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_28:.*]] = affine.apply #[[$map4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_29:.*]] = memref.load %[[VAL_2]][%[[VAL_27]], %[[VAL_28]]] : memref<16x8xf32>
-// CHECK:           %[[VAL_30:.*]] = vector.splat %[[VAL_20]] : vector<2x2xf32>
+// CHECK:           %[[VAL_30:.*]] = vector.broadcast %[[VAL_20]] : f32 to vector<2x2xf32>
 // CHECK:           %[[VAL_31:.*]] = vector.insert %[[VAL_20]], %[[VAL_30]] [0, 0] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_32:.*]] = vector.insert %[[VAL_23]], %[[VAL_31]] [0, 1] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_33:.*]] = vector.insert %[[VAL_26]], %[[VAL_32]] [1, 0] : f32 into vector<2x2xf32>

@llvmbot
Copy link
Member

llvmbot commented Jul 10, 2025

@llvm/pr-subscribers-mlir-arith

Author: James Newling (newling)

Changes

Part of deprecation of vector.splat

RFC: https://discourse.llvm.org/t/rfc-mlir-vector-deprecate-then-remove-vector-splat/87143/4
More complete deprecation: #147818


Full diff: https://github.com/llvm/llvm-project/pull/148028.diff

4 Files Affected:

  • (modified) mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp (+1-1)
  • (modified) mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp (+1-1)
  • (modified) mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp (+2-1)
  • (modified) mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir (+3-3)
diff --git a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
index 62022bfb7df1e..22dd3bd0ea98f 100644
--- a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
@@ -123,7 +123,7 @@ void mlir::arith::populateEmulateUnsupportedFloatsLegality(
       vector::FMAOp, vector::OuterProductOp, vector::MatmulOp, vector::ScanOp>(
       [&](Operation *op) { return converter.isLegal(op); });
   target.addLegalOp<arith::BitcastOp, arith::ExtFOp, arith::TruncFOp,
-                    arith::ConstantOp, vector::SplatOp>();
+                    arith::ConstantOp, vector::SplatOp, vector::BroadcastOp>();
 }
 
 void EmulateUnsupportedFloatsPass::runOnOperation() {
diff --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index d2c94b124cdfb..bcd62acf6b9ce 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -688,7 +688,7 @@ Value MmaSyncBuilder::buildMmaSyncMemRefLoadOperand(
 
   Type elementType = getElementTypeOrSelf(memref.getType());
   auto vt = VectorType::get(vectorShape, elementType);
-  Value res = b.create<vector::SplatOp>(loc, vt, loads[0]);
+  Value res = b.create<vector::BroadcastOp>(loc, vt, loads[0]);
   foreachIndividualVectorElement(
       res,
       /*applyFn=*/
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
index 2c48a735bf956..9ebac21770136 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
@@ -438,7 +438,8 @@ struct UnrollCreateDescOp : public UnrollPattern<xegpu::CreateDescOp> {
           // Compute the offset
           Value inc = rewriter.create<arith::ConstantIndexOp>(
               loc, i * blockedChunkSize);
-          Value incVec = rewriter.create<vector::SplatOp>(loc, indiceType, inc);
+          Value incVec =
+              rewriter.create<vector::BroadcastOp>(loc, indiceType, inc);
           Value offsetIndice =
               rewriter.create<arith::AddIOp>(loc, indice, incVec);
 
diff --git a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
index 07e03f3b8473d..bbe27fe1b99d9 100644
--- a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
+++ b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
@@ -20,14 +20,14 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_7:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_8:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_0]][%[[VAL_7]], %[[VAL_8]]] : memref<16x4xf32>
-// CHECK:           %[[VAL_10:.*]] = vector.splat %[[VAL_6]] : vector<2x1xf32>
+// CHECK:           %[[VAL_10:.*]] = vector.broadcast %[[VAL_6]] : f32 to vector<2x1xf32>
 // CHECK:           %[[VAL_11:.*]] = vector.insert %[[VAL_6]], %[[VAL_10]] [0, 0] : f32 into vector<2x1xf32>
 // CHECK:           %[[LHS:.*]] = vector.insert %[[VAL_9]], %[[VAL_11]] [1, 0] : f32 into vector<2x1xf32>
 //
 // CHECK:           %[[VAL_13:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_14:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_1]][%[[VAL_13]], %[[VAL_14]]] : memref<4x8xf32>
-// CHECK:           %[[VAL_16:.*]] = vector.splat %[[VAL_15]] : vector<1x1xf32>
+// CHECK:           %[[VAL_16:.*]] = vector.broadcast %[[VAL_15]] : f32 to vector<1x1xf32>
 // CHECK:           %[[RHS:.*]] = vector.insert %[[VAL_15]], %[[VAL_16]] [0, 0] : f32 into vector<1x1xf32>
 //
 // CHECK:           %[[VAL_18:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
@@ -42,7 +42,7 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_27:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_28:.*]] = affine.apply #[[$map4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_29:.*]] = memref.load %[[VAL_2]][%[[VAL_27]], %[[VAL_28]]] : memref<16x8xf32>
-// CHECK:           %[[VAL_30:.*]] = vector.splat %[[VAL_20]] : vector<2x2xf32>
+// CHECK:           %[[VAL_30:.*]] = vector.broadcast %[[VAL_20]] : f32 to vector<2x2xf32>
 // CHECK:           %[[VAL_31:.*]] = vector.insert %[[VAL_20]], %[[VAL_30]] [0, 0] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_32:.*]] = vector.insert %[[VAL_23]], %[[VAL_31]] [0, 1] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_33:.*]] = vector.insert %[[VAL_26]], %[[VAL_32]] [1, 0] : f32 into vector<2x2xf32>

@llvmbot
Copy link
Member

llvmbot commented Jul 10, 2025

@llvm/pr-subscribers-mlir-gpu

Author: James Newling (newling)

Changes

Part of deprecation of vector.splat

RFC: https://discourse.llvm.org/t/rfc-mlir-vector-deprecate-then-remove-vector-splat/87143/4
More complete deprecation: #147818


Full diff: https://github.com/llvm/llvm-project/pull/148028.diff

4 Files Affected:

  • (modified) mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp (+1-1)
  • (modified) mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp (+1-1)
  • (modified) mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp (+2-1)
  • (modified) mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir (+3-3)
diff --git a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
index 62022bfb7df1e..22dd3bd0ea98f 100644
--- a/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/EmulateUnsupportedFloats.cpp
@@ -123,7 +123,7 @@ void mlir::arith::populateEmulateUnsupportedFloatsLegality(
       vector::FMAOp, vector::OuterProductOp, vector::MatmulOp, vector::ScanOp>(
       [&](Operation *op) { return converter.isLegal(op); });
   target.addLegalOp<arith::BitcastOp, arith::ExtFOp, arith::TruncFOp,
-                    arith::ConstantOp, vector::SplatOp>();
+                    arith::ConstantOp, vector::SplatOp, vector::BroadcastOp>();
 }
 
 void EmulateUnsupportedFloatsPass::runOnOperation() {
diff --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index d2c94b124cdfb..bcd62acf6b9ce 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -688,7 +688,7 @@ Value MmaSyncBuilder::buildMmaSyncMemRefLoadOperand(
 
   Type elementType = getElementTypeOrSelf(memref.getType());
   auto vt = VectorType::get(vectorShape, elementType);
-  Value res = b.create<vector::SplatOp>(loc, vt, loads[0]);
+  Value res = b.create<vector::BroadcastOp>(loc, vt, loads[0]);
   foreachIndividualVectorElement(
       res,
       /*applyFn=*/
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
index 2c48a735bf956..9ebac21770136 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
@@ -438,7 +438,8 @@ struct UnrollCreateDescOp : public UnrollPattern<xegpu::CreateDescOp> {
           // Compute the offset
           Value inc = rewriter.create<arith::ConstantIndexOp>(
               loc, i * blockedChunkSize);
-          Value incVec = rewriter.create<vector::SplatOp>(loc, indiceType, inc);
+          Value incVec =
+              rewriter.create<vector::BroadcastOp>(loc, indiceType, inc);
           Value offsetIndice =
               rewriter.create<arith::AddIOp>(loc, indice, incVec);
 
diff --git a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
index 07e03f3b8473d..bbe27fe1b99d9 100644
--- a/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
+++ b/mlir/test/Dialect/NVGPU/transform-matmul-to-nvvm.mlir
@@ -20,14 +20,14 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_7:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_8:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_0]][%[[VAL_7]], %[[VAL_8]]] : memref<16x4xf32>
-// CHECK:           %[[VAL_10:.*]] = vector.splat %[[VAL_6]] : vector<2x1xf32>
+// CHECK:           %[[VAL_10:.*]] = vector.broadcast %[[VAL_6]] : f32 to vector<2x1xf32>
 // CHECK:           %[[VAL_11:.*]] = vector.insert %[[VAL_6]], %[[VAL_10]] [0, 0] : f32 into vector<2x1xf32>
 // CHECK:           %[[LHS:.*]] = vector.insert %[[VAL_9]], %[[VAL_11]] [1, 0] : f32 into vector<2x1xf32>
 //
 // CHECK:           %[[VAL_13:.*]] = affine.apply #[[$mod4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_14:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_1]][%[[VAL_13]], %[[VAL_14]]] : memref<4x8xf32>
-// CHECK:           %[[VAL_16:.*]] = vector.splat %[[VAL_15]] : vector<1x1xf32>
+// CHECK:           %[[VAL_16:.*]] = vector.broadcast %[[VAL_15]] : f32 to vector<1x1xf32>
 // CHECK:           %[[RHS:.*]] = vector.insert %[[VAL_15]], %[[VAL_16]] [0, 0] : f32 into vector<1x1xf32>
 //
 // CHECK:           %[[VAL_18:.*]] = affine.apply #[[$div4]]()[%[[TIDX]]]
@@ -42,7 +42,7 @@ func.func @matmul_16x8x4xf32_global(
 // CHECK:           %[[VAL_27:.*]] = affine.apply #[[$div4p8]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_28:.*]] = affine.apply #[[$map4]]()[%[[TIDX]]]
 // CHECK:           %[[VAL_29:.*]] = memref.load %[[VAL_2]][%[[VAL_27]], %[[VAL_28]]] : memref<16x8xf32>
-// CHECK:           %[[VAL_30:.*]] = vector.splat %[[VAL_20]] : vector<2x2xf32>
+// CHECK:           %[[VAL_30:.*]] = vector.broadcast %[[VAL_20]] : f32 to vector<2x2xf32>
 // CHECK:           %[[VAL_31:.*]] = vector.insert %[[VAL_20]], %[[VAL_30]] [0, 0] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_32:.*]] = vector.insert %[[VAL_23]], %[[VAL_31]] [0, 1] : f32 into vector<2x2xf32>
 // CHECK:           %[[VAL_33:.*]] = vector.insert %[[VAL_26]], %[[VAL_32]] [1, 0] : f32 into vector<2x2xf32>

@adam-smnk adam-smnk requested a review from chencha3 July 10, 2025 19:40
Copy link
Member

@grypp grypp left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks for fixing this

Copy link
Contributor

@chencha3 chencha3 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. Thanks for the fix.

@newling newling merged commit 9987573 into llvm:main Jul 14, 2025
14 checks passed
@cathyzhyi
Copy link
Contributor

Hey, not sure if you are aware of this already, it seems these tests https://github.com/llvm/llvm-project/tree/main/mlir/test/Integration/GPU/CUDA/TensorCore/sm80 are broken by this change.

@newling
Copy link
Contributor Author

newling commented Jul 15, 2025

Thanks for notifying me @cathyzhyi I didn't received any email about this. Can you please point me to the failure in CI, and advise me on how to proceed?

@newling
Copy link
Contributor Author

newling commented Jul 15, 2025

Discussed offline, will revert: #148937 and reland later

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants